3.1.40 \(\int \csc ^4(c+d x) \sqrt {a+a \sin (c+d x)} \, dx\) [40]

3.1.40.1 Optimal result
3.1.40.2 Mathematica [B] (verified)
3.1.40.3 Rubi [A] (verified)
3.1.40.4 Maple [A] (verified)
3.1.40.5 Fricas [B] (verification not implemented)
3.1.40.6 Sympy [F]
3.1.40.7 Maxima [F]
3.1.40.8 Giac [A] (verification not implemented)
3.1.40.9 Mupad [F(-1)]

3.1.40.1 Optimal result

Integrand size = 23, antiderivative size = 138 \[ \int \csc ^4(c+d x) \sqrt {a+a \sin (c+d x)} \, dx=-\frac {5 \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{8 d}-\frac {5 a \cot (c+d x)}{8 d \sqrt {a+a \sin (c+d x)}}-\frac {5 a \cot (c+d x) \csc (c+d x)}{12 d \sqrt {a+a \sin (c+d x)}}-\frac {a \cot (c+d x) \csc ^2(c+d x)}{3 d \sqrt {a+a \sin (c+d x)}} \]

output
-5/8*arctanh(cos(d*x+c)*a^(1/2)/(a+a*sin(d*x+c))^(1/2))*a^(1/2)/d-5/8*a*co 
t(d*x+c)/d/(a+a*sin(d*x+c))^(1/2)-5/12*a*cot(d*x+c)*csc(d*x+c)/d/(a+a*sin( 
d*x+c))^(1/2)-1/3*a*cot(d*x+c)*csc(d*x+c)^2/d/(a+a*sin(d*x+c))^(1/2)
 
3.1.40.2 Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(285\) vs. \(2(138)=276\).

Time = 1.14 (sec) , antiderivative size = 285, normalized size of antiderivative = 2.07 \[ \int \csc ^4(c+d x) \sqrt {a+a \sin (c+d x)} \, dx=\frac {\csc ^{10}\left (\frac {1}{2} (c+d x)\right ) \sqrt {a (1+\sin (c+d x))} \left (-84 \cos \left (\frac {1}{2} (c+d x)\right )-10 \cos \left (\frac {3}{2} (c+d x)\right )+30 \cos \left (\frac {5}{2} (c+d x)\right )+84 \sin \left (\frac {1}{2} (c+d x)\right )-45 \log \left (1+\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right ) \sin (c+d x)+45 \log \left (1-\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right ) \sin (c+d x)-10 \sin \left (\frac {3}{2} (c+d x)\right )-30 \sin \left (\frac {5}{2} (c+d x)\right )+15 \log \left (1+\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right ) \sin (3 (c+d x))-15 \log \left (1-\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right ) \sin (3 (c+d x))\right )}{24 d \left (1+\cot \left (\frac {1}{2} (c+d x)\right )\right ) \left (\csc ^2\left (\frac {1}{4} (c+d x)\right )-\sec ^2\left (\frac {1}{4} (c+d x)\right )\right )^3} \]

input
Integrate[Csc[c + d*x]^4*Sqrt[a + a*Sin[c + d*x]],x]
 
output
(Csc[(c + d*x)/2]^10*Sqrt[a*(1 + Sin[c + d*x])]*(-84*Cos[(c + d*x)/2] - 10 
*Cos[(3*(c + d*x))/2] + 30*Cos[(5*(c + d*x))/2] + 84*Sin[(c + d*x)/2] - 45 
*Log[1 + Cos[(c + d*x)/2] - Sin[(c + d*x)/2]]*Sin[c + d*x] + 45*Log[1 - Co 
s[(c + d*x)/2] + Sin[(c + d*x)/2]]*Sin[c + d*x] - 10*Sin[(3*(c + d*x))/2] 
- 30*Sin[(5*(c + d*x))/2] + 15*Log[1 + Cos[(c + d*x)/2] - Sin[(c + d*x)/2] 
]*Sin[3*(c + d*x)] - 15*Log[1 - Cos[(c + d*x)/2] + Sin[(c + d*x)/2]]*Sin[3 
*(c + d*x)]))/(24*d*(1 + Cot[(c + d*x)/2])*(Csc[(c + d*x)/4]^2 - Sec[(c + 
d*x)/4]^2)^3)
 
3.1.40.3 Rubi [A] (verified)

Time = 0.61 (sec) , antiderivative size = 144, normalized size of antiderivative = 1.04, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.391, Rules used = {3042, 3251, 3042, 3251, 3042, 3251, 3042, 3252, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \csc ^4(c+d x) \sqrt {a \sin (c+d x)+a} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a \sin (c+d x)+a}}{\sin (c+d x)^4}dx\)

\(\Big \downarrow \) 3251

\(\displaystyle \frac {5}{6} \int \csc ^3(c+d x) \sqrt {\sin (c+d x) a+a}dx-\frac {a \cot (c+d x) \csc ^2(c+d x)}{3 d \sqrt {a \sin (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {5}{6} \int \frac {\sqrt {\sin (c+d x) a+a}}{\sin (c+d x)^3}dx-\frac {a \cot (c+d x) \csc ^2(c+d x)}{3 d \sqrt {a \sin (c+d x)+a}}\)

\(\Big \downarrow \) 3251

\(\displaystyle \frac {5}{6} \left (\frac {3}{4} \int \csc ^2(c+d x) \sqrt {\sin (c+d x) a+a}dx-\frac {a \cot (c+d x) \csc (c+d x)}{2 d \sqrt {a \sin (c+d x)+a}}\right )-\frac {a \cot (c+d x) \csc ^2(c+d x)}{3 d \sqrt {a \sin (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {5}{6} \left (\frac {3}{4} \int \frac {\sqrt {\sin (c+d x) a+a}}{\sin (c+d x)^2}dx-\frac {a \cot (c+d x) \csc (c+d x)}{2 d \sqrt {a \sin (c+d x)+a}}\right )-\frac {a \cot (c+d x) \csc ^2(c+d x)}{3 d \sqrt {a \sin (c+d x)+a}}\)

\(\Big \downarrow \) 3251

\(\displaystyle \frac {5}{6} \left (\frac {3}{4} \left (\frac {1}{2} \int \csc (c+d x) \sqrt {\sin (c+d x) a+a}dx-\frac {a \cot (c+d x)}{d \sqrt {a \sin (c+d x)+a}}\right )-\frac {a \cot (c+d x) \csc (c+d x)}{2 d \sqrt {a \sin (c+d x)+a}}\right )-\frac {a \cot (c+d x) \csc ^2(c+d x)}{3 d \sqrt {a \sin (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {5}{6} \left (\frac {3}{4} \left (\frac {1}{2} \int \frac {\sqrt {\sin (c+d x) a+a}}{\sin (c+d x)}dx-\frac {a \cot (c+d x)}{d \sqrt {a \sin (c+d x)+a}}\right )-\frac {a \cot (c+d x) \csc (c+d x)}{2 d \sqrt {a \sin (c+d x)+a}}\right )-\frac {a \cot (c+d x) \csc ^2(c+d x)}{3 d \sqrt {a \sin (c+d x)+a}}\)

\(\Big \downarrow \) 3252

\(\displaystyle \frac {5}{6} \left (\frac {3}{4} \left (-\frac {a \int \frac {1}{a-\frac {a^2 \cos ^2(c+d x)}{\sin (c+d x) a+a}}d\frac {a \cos (c+d x)}{\sqrt {\sin (c+d x) a+a}}}{d}-\frac {a \cot (c+d x)}{d \sqrt {a \sin (c+d x)+a}}\right )-\frac {a \cot (c+d x) \csc (c+d x)}{2 d \sqrt {a \sin (c+d x)+a}}\right )-\frac {a \cot (c+d x) \csc ^2(c+d x)}{3 d \sqrt {a \sin (c+d x)+a}}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {5}{6} \left (\frac {3}{4} \left (-\frac {\sqrt {a} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a \sin (c+d x)+a}}\right )}{d}-\frac {a \cot (c+d x)}{d \sqrt {a \sin (c+d x)+a}}\right )-\frac {a \cot (c+d x) \csc (c+d x)}{2 d \sqrt {a \sin (c+d x)+a}}\right )-\frac {a \cot (c+d x) \csc ^2(c+d x)}{3 d \sqrt {a \sin (c+d x)+a}}\)

input
Int[Csc[c + d*x]^4*Sqrt[a + a*Sin[c + d*x]],x]
 
output
-1/3*(a*Cot[c + d*x]*Csc[c + d*x]^2)/(d*Sqrt[a + a*Sin[c + d*x]]) + (5*(-1 
/2*(a*Cot[c + d*x]*Csc[c + d*x])/(d*Sqrt[a + a*Sin[c + d*x]]) + (3*(-((Sqr 
t[a]*ArcTanh[(Sqrt[a]*Cos[c + d*x])/Sqrt[a + a*Sin[c + d*x]]])/d) - (a*Cot 
[c + d*x])/(d*Sqrt[a + a*Sin[c + d*x]])))/4))/6
 

3.1.40.3.1 Defintions of rubi rules used

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3251
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*c - a*d)*Cos[e + f*x]*((c + d*Sin[e 
+ f*x])^(n + 1)/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]])), x] + Sim 
p[(2*n + 3)*((b*c - a*d)/(2*b*(n + 1)*(c^2 - d^2)))   Int[Sqrt[a + b*Sin[e 
+ f*x]]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x 
] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, 
-1] && NeQ[2*n + 3, 0] && IntegerQ[2*n]
 

rule 3252
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)]), x_Symbol] :> Simp[-2*(b/f)   Subst[Int[1/(b*c + a*d - d*x^2), 
x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, 
 e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 
3.1.40.4 Maple [A] (verified)

Time = 0.88 (sec) , antiderivative size = 158, normalized size of antiderivative = 1.14

method result size
default \(-\frac {\left (1+\sin \left (d x +c \right )\right ) \sqrt {-a \left (\sin \left (d x +c \right )-1\right )}\, \left (15 \sqrt {-a \left (\sin \left (d x +c \right )-1\right )}\, a^{\frac {3}{2}} \left (\sin ^{2}\left (d x +c \right )\right )+15 \,\operatorname {arctanh}\left (\frac {\sqrt {-a \left (\sin \left (d x +c \right )-1\right )}}{\sqrt {a}}\right ) \left (\sin ^{3}\left (d x +c \right )\right ) a^{2}+10 \sqrt {-a \left (\sin \left (d x +c \right )-1\right )}\, \sin \left (d x +c \right ) a^{\frac {3}{2}}+8 \sqrt {-a \left (\sin \left (d x +c \right )-1\right )}\, a^{\frac {3}{2}}\right )}{24 \sin \left (d x +c \right )^{3} a^{\frac {3}{2}} \cos \left (d x +c \right ) \sqrt {a +a \sin \left (d x +c \right )}\, d}\) \(158\)

input
int(csc(d*x+c)^4*(a+a*sin(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 
output
-1/24*(1+sin(d*x+c))*(-a*(sin(d*x+c)-1))^(1/2)*(15*(-a*(sin(d*x+c)-1))^(1/ 
2)*a^(3/2)*sin(d*x+c)^2+15*arctanh((-a*(sin(d*x+c)-1))^(1/2)/a^(1/2))*sin( 
d*x+c)^3*a^2+10*(-a*(sin(d*x+c)-1))^(1/2)*sin(d*x+c)*a^(3/2)+8*(-a*(sin(d* 
x+c)-1))^(1/2)*a^(3/2))/sin(d*x+c)^3/a^(3/2)/cos(d*x+c)/(a+a*sin(d*x+c))^( 
1/2)/d
 
3.1.40.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 361 vs. \(2 (118) = 236\).

Time = 0.28 (sec) , antiderivative size = 361, normalized size of antiderivative = 2.62 \[ \int \csc ^4(c+d x) \sqrt {a+a \sin (c+d x)} \, dx=\frac {15 \, {\left (\cos \left (d x + c\right )^{4} - 2 \, \cos \left (d x + c\right )^{2} - {\left (\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2} - \cos \left (d x + c\right ) - 1\right )} \sin \left (d x + c\right ) + 1\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, {\left (\cos \left (d x + c\right )^{2} + {\left (\cos \left (d x + c\right ) + 3\right )} \sin \left (d x + c\right ) - 2 \, \cos \left (d x + c\right ) - 3\right )} \sqrt {a \sin \left (d x + c\right ) + a} \sqrt {a} - 9 \, a \cos \left (d x + c\right ) + {\left (a \cos \left (d x + c\right )^{2} + 8 \, a \cos \left (d x + c\right ) - a\right )} \sin \left (d x + c\right ) - a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2} + {\left (\cos \left (d x + c\right )^{2} - 1\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 1}\right ) + 4 \, {\left (15 \, \cos \left (d x + c\right )^{3} + 5 \, \cos \left (d x + c\right )^{2} - {\left (15 \, \cos \left (d x + c\right )^{2} + 10 \, \cos \left (d x + c\right ) - 13\right )} \sin \left (d x + c\right ) - 23 \, \cos \left (d x + c\right ) - 13\right )} \sqrt {a \sin \left (d x + c\right ) + a}}{96 \, {\left (d \cos \left (d x + c\right )^{4} - 2 \, d \cos \left (d x + c\right )^{2} - {\left (d \cos \left (d x + c\right )^{3} + d \cos \left (d x + c\right )^{2} - d \cos \left (d x + c\right ) - d\right )} \sin \left (d x + c\right ) + d\right )}} \]

input
integrate(csc(d*x+c)^4*(a+a*sin(d*x+c))^(1/2),x, algorithm="fricas")
 
output
1/96*(15*(cos(d*x + c)^4 - 2*cos(d*x + c)^2 - (cos(d*x + c)^3 + cos(d*x + 
c)^2 - cos(d*x + c) - 1)*sin(d*x + c) + 1)*sqrt(a)*log((a*cos(d*x + c)^3 - 
 7*a*cos(d*x + c)^2 - 4*(cos(d*x + c)^2 + (cos(d*x + c) + 3)*sin(d*x + c) 
- 2*cos(d*x + c) - 3)*sqrt(a*sin(d*x + c) + a)*sqrt(a) - 9*a*cos(d*x + c) 
+ (a*cos(d*x + c)^2 + 8*a*cos(d*x + c) - a)*sin(d*x + c) - a)/(cos(d*x + c 
)^3 + cos(d*x + c)^2 + (cos(d*x + c)^2 - 1)*sin(d*x + c) - cos(d*x + c) - 
1)) + 4*(15*cos(d*x + c)^3 + 5*cos(d*x + c)^2 - (15*cos(d*x + c)^2 + 10*co 
s(d*x + c) - 13)*sin(d*x + c) - 23*cos(d*x + c) - 13)*sqrt(a*sin(d*x + c) 
+ a))/(d*cos(d*x + c)^4 - 2*d*cos(d*x + c)^2 - (d*cos(d*x + c)^3 + d*cos(d 
*x + c)^2 - d*cos(d*x + c) - d)*sin(d*x + c) + d)
 
3.1.40.6 Sympy [F]

\[ \int \csc ^4(c+d x) \sqrt {a+a \sin (c+d x)} \, dx=\int \sqrt {a \left (\sin {\left (c + d x \right )} + 1\right )} \csc ^{4}{\left (c + d x \right )}\, dx \]

input
integrate(csc(d*x+c)**4*(a+a*sin(d*x+c))**(1/2),x)
 
output
Integral(sqrt(a*(sin(c + d*x) + 1))*csc(c + d*x)**4, x)
 
3.1.40.7 Maxima [F]

\[ \int \csc ^4(c+d x) \sqrt {a+a \sin (c+d x)} \, dx=\int { \sqrt {a \sin \left (d x + c\right ) + a} \csc \left (d x + c\right )^{4} \,d x } \]

input
integrate(csc(d*x+c)^4*(a+a*sin(d*x+c))^(1/2),x, algorithm="maxima")
 
output
integrate(sqrt(a*sin(d*x + c) + a)*csc(d*x + c)^4, x)
 
3.1.40.8 Giac [A] (verification not implemented)

Time = 0.62 (sec) , antiderivative size = 184, normalized size of antiderivative = 1.33 \[ \int \csc ^4(c+d x) \sqrt {a+a \sin (c+d x)} \, dx=-\frac {\sqrt {2} {\left (15 \, \sqrt {2} \log \left (\frac {{\left | -2 \, \sqrt {2} + 4 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}{{\left | 2 \, \sqrt {2} + 4 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}\right ) \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) + \frac {4 \, {\left (60 \, \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 80 \, \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 33 \, \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (2 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{3}}\right )} \sqrt {a}}{96 \, d} \]

input
integrate(csc(d*x+c)^4*(a+a*sin(d*x+c))^(1/2),x, algorithm="giac")
 
output
-1/96*sqrt(2)*(15*sqrt(2)*log(abs(-2*sqrt(2) + 4*sin(-1/4*pi + 1/2*d*x + 1 
/2*c))/abs(2*sqrt(2) + 4*sin(-1/4*pi + 1/2*d*x + 1/2*c)))*sgn(cos(-1/4*pi 
+ 1/2*d*x + 1/2*c)) + 4*(60*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))*sin(-1/4*p 
i + 1/2*d*x + 1/2*c)^5 - 80*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))*sin(-1/4*p 
i + 1/2*d*x + 1/2*c)^3 + 33*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))*sin(-1/4*p 
i + 1/2*d*x + 1/2*c))/(2*sin(-1/4*pi + 1/2*d*x + 1/2*c)^2 - 1)^3)*sqrt(a)/ 
d
 
3.1.40.9 Mupad [F(-1)]

Timed out. \[ \int \csc ^4(c+d x) \sqrt {a+a \sin (c+d x)} \, dx=\int \frac {\sqrt {a+a\,\sin \left (c+d\,x\right )}}{{\sin \left (c+d\,x\right )}^4} \,d x \]

input
int((a + a*sin(c + d*x))^(1/2)/sin(c + d*x)^4,x)
 
output
int((a + a*sin(c + d*x))^(1/2)/sin(c + d*x)^4, x)